The Vandermonde determinant

Posted: September 12, 2022 in Basic Algebra, Matrices
Tags:

One of the determinants that appear a lot in mathematics is the so-called Vandermonde determinant.

Definition. The n \times n Vandermonde matrix is defined as follows

\displaystyle V(x_1, \cdots , x_n):=\begin{pmatrix}1 & x_1 & \cdots & x_1^{n-1} \\ 1 & x_2 & \cdots & x_2^{n-1} \\ \vdots & \vdots & \cdots & \vdots \\ 1 & x_n & \cdots & x_n^{n-1}\end{pmatrix}.

The determinant of the matrix V(x_1, \cdots ,x_n) is called the Vandermonde determinant.

Of course, the value of \det V(x_1, \cdots , x_n) is quite well-known but let’s find it anyway.

Remark 1. Expanding along the first row, gives

\det V(0,x_2, \cdots ,x_n)=x_2 \cdots x_n \det V(x_2, \cdots x_n).

Problem 1. Show that

\displaystyle \det V(x_1, \cdots ,x_n)=\prod_{n \ge i > j \ge 1}(x_i-x_j).

Solution. The proof is by induction on n. For n=2 we have \det V(x_1,x_2)=x_2-x_1. For the general case, first note that if one of the x_i‘s is zero, say x_1=0, then, by Remark 1,

\det V(x_1, \cdots ,x_n)=\det V(0,x_2, \cdots ,x_n)=x_2 \cdots x_n \det V(x_2, \cdots ,x_n)

and we are done by induction. Suppose now that x_i \ne 0 for all i. Consider the function

p(t):=\det V(t,x_2, \cdots ,x_n),

which is clearly a polynomial of degree at most n-1. It is also clear that p(x_2)= \cdots p(x_n)=0. Thus p(t)=c(t-x_2) \cdots (t-x_n), for some constant c. Now, using Remark 1,

(-1)^{n-1}cx_2 \cdots x_n=p(0)=\det V(0, x_2, \cdots , x_n)= x_2 \cdots x_n \det V(x_2, \cdots , x_n),

which gives c=(-1)^{n-1}\det V(x_2, \cdots , x_n). Hence

\begin{aligned}p(t)=(-1)^{n-1}(t-x_2) \cdots (t-x_n)\det V(x_2, \cdots , x_n)=(x_2-t) \cdots (x_n-t)\det V(x_2, \cdots , x_n)\end{aligned}

and so \det V(x_1, \cdots , x_n)=p(x_1)=(x_2-x_1) \cdots (x_n-x_1)\det V(x_2, \cdots , x_n). We are now done by induction. \ \Box

Remark 2. By Problem 1, V(x_1, \cdots , x_n) is invertible if and only if x_i \ne x_j for all i \ne j.

We now use Problem 1 to find the determinant of a slightly more complicated matrix.

Problem 2. Let A be the n \times n matrix whose (i,j)-entry is (x_i+y_j)^{n-1}. Show that

\displaystyle \det A=\prod_{k=1}^{n-1}\binom{n-1}{k}\prod_{n \ge i > j \ge 1}(x_i-x_j)(y_j-y_i).

Solution. Since

\displaystyle (x_i+y_j)^{n-1}=\sum_{k=0}^{n-1}\binom{n-1}{k}x_i^ky_j^{n-1-k},

we have A=BC, where

\displaystyle B=\begin{pmatrix}1 & \binom{n-1}{1}x_1 & \cdots & \binom{n-1}{n-1}x_1^{n-1} \\ 1 & \binom{n-1}{1}x_2 & \cdots & \binom{n-1}{n-1}x_2^{n-1} \\ \vdots & \vdots & \cdots & \vdots \\ 1 & \binom{n-1}{1}x_n & \cdots & \binom{n-1}{n-1}x_n^{n-1}\end{pmatrix}, \ \ \ \ \ \ C=\begin{pmatrix}y_1^{n-1} & y_2^{n-1} & \cdots & y_n^{n-1} \\ y_1^{n-2} & y_2^{n-2} & \cdots & y_n^{n-2} \\ \vdots & \vdots & \cdots & \vdots \\ 1 & 1 & \cdots & 1\end{pmatrix}.

Thus \det A=\det B \det C. Clearly

\displaystyle \det B=\prod_{k=1}^{n-1}\binom{n-1}{k}\det V(x_1, \cdots ,x_n)=\prod_{k=1}^{n-1}\binom{n-1}{k}\prod_{n \ge i > j \ge 1}(x_i-x_j),

by Problem 1. To find \det C, note that swapping columns of C^T, the transpose of C, gives

\displaystyle \det C=\det C^T=(-1)^{n(n-1)/2} \det V(y_1, \cdots , y_n)=\prod_{n \ge i > j \ge 1}(y_j-y_i),

by Problem 1. \ \Box

Leave a Reply