Archive for the ‘Uncategorized’ Category

Problem. Let A \in M_3(\mathbb{R}) be orthogonal and suppose that \det(A)=-1. Find \det(A-I).

Solution. Since A is orthogonal, its eigenvalues have absolute value 1 and it can be be diagonalized. Let D be a diagonal matrix such that PDP^{-1}=A for some invertible matrix P \in M_3(\mathbb{C}). Then

\det(D)=\det(A)=-1, \ \ \det(D-I)=\det(A-I).

We claim that the eigenvalues of A are \{-1,e^{i\theta},e^{-i\theta}\} for some \theta. Well, the characteristic polynomial of A has degree three and so it has either three real roots or only one real root. Also, the complex conjugate of a root of a polynomial with real coefficients is also a root. So, since \det(A)=-1, the eigenvalues of A are either all -1, which is the case \theta=\pi, or two of them are 1 and one is -1, which is the case \theta = 0, or one is -1 and the other two are in the form \{e^{i\theta}, e^{-i\theta}\} for some \theta. So

\displaystyle \begin{aligned} \det(D-I)=\det(A-I)=(-2)(e^{i\theta}-1)(e^{-i\theta}-1)=-4(1-\cos \theta). \ \Box \end{aligned}

Note that given \theta, the matrix

\displaystyle A=\begin{pmatrix} -1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{pmatrix}

is orthogonal, \det(A)=-1 and \det(A-I)=-4(1-\cos \theta).

 

Advertisements

Happy Pi day!

Posted: March 14, 2018 in Uncategorized

Happy \pi day!

\displaystyle \left(1+\frac{1}{\pi}\right)^{\pi+1} \approx \pi