Posts Tagged ‘central’

Throughout R is a ring.

Theorem (Jacobson). If for every x \in R there exists some n > 1 such that x^n=x, then R is commutative.

The proof of Jacobson’s theorem can be found in standard ring theory textbooks. Here we only discuss a very special case of the theorem, i.e. when x^3=x for all x \in R.

Definitions. An element x \in R is called idempotent if x^2=x. The center of R is

Z(R)=\{x \in R: \ xy=yx \ \text{for all} \ y \in R \}.

It is easy to see that Z(R) is a subring of R. An element x \in R is called central if x \in Z(R). Obviously R is commutative iff Z(R)=R, i.e. every element of R is central.

Problem. Prove that if x^3=x for all x \in R, then R is commutative.

Solution.  Clearly R is reduced, i.e. R has no nonzero nilpotent element.  For every x \in R we have (x^2)^2=x^4 = x^2 and so x^2 is idempotent for all x \in R. Hence, by Remark 3 in this post, x^2 is central for all x \in R. Now, since

(x^2+x)^2=x^4+2x^3+x^2=2x^2+2x

we have 2x=(x^2+x)^2-2x^2 and thus 2x is central. Also, since

x^2+x=(x^2+x)^3=x^6+3x^5+3x^4+x^3=4x^2+4x,

we have 3x=-3x^2 and hence 3x is central. Therefore x = 3x-2x is central. \Box

A similar argument shows that if x^4=x for all x \in R, then R is commutative (see here!).