As usual, I’ll assume that k is a field. Recall that if a k-algebra A is an Ore domain, then we can localize A at S:=A \setminus \{0\} and get the division algebra Q(A):=S^{-1}A. The algebra Q(A) is called the quotient division algebra of A.

Theorem (Borho and Kraft, 1976) Let A be a finitely generated k-algebra which is a domain of finite GK dimension. Let B be a k-subalgebra of A and suppose that {\rm{GKdim}}(A) < {\rm{GKdim}}(B) + 1. Let S:=B \setminus \{0\}. Then S is an Ore subset of A and S^{-1}A=Q(A). Also, Q(A) is finite dimensional as a (left or right) vector space over Q(B).

Proof. First note that, by the corollary in this post, A is an Ore domain and hence both Q(A) and Q(B) exist and they are division algebras. Now, suppose, to the contrary, that S is not (left) Ore. Then there exist x \in S and y \in A such that Sy \cap Ax = \emptyset. This implies that the sum By + Byx + \ldots + Byx^m is direct for any integer m. Let W be a frame of a finitely generated subalgebra B' of B. Let V=W+kx+ky and suppose that A' is the subalgebra of A which is generated by V. For any positive integer n we have

V^{2n} \supseteq W^n(kx+ky)^n \supseteq W^ny + W^nyx + \ldots + W^nyx^{n-1}

and thus \dim_k V^{2n} \geq n \dim_k W^n because the sum is direct. So \log_n \dim_k V^{2n} \geq 1 + \log_n \dim_k W^n and hence {\rm{GKdim}}(A) \geq {\rm{GKdim}}(A') \geq 1 + {\rm{GKdim}}(B'). Taking supremum of both sides over all finitely generated subalgebras B' of B will give us the contradiction {\rm{GKdim}}(A) \geq 1 + {\rm{GKdim}}(B). A similar argument shows that S is right Ore. So we have proved that S is an Ore subset of A. Before we show that S^{-1}A=Q(A), we will prove that Q(B)A=S^{-1}A is finite dimensional as a (left) vector space over Q(B). So let V be a frame of A. For any positive ineteger n, let r(n) = \dim_{Q(B)} Q(B)V^n. Clearly Q(B)V^n \subseteq Q(B)V^{n+1} for all n and

\bigcup_{n=0}^{\infty}Q(B)V^n =Q(B)A

because \bigcup_{n=0}^{\infty}V^n=A. So we have two possibilities: either Q(B)V^n=Q(B)A for some n or the sequence \{r(n)\} is strictly increasing. If Q(B)V^n = Q(B)A, then we are done because V^n is finite dimensional over k and hence Q(B)V^n is finite dimensional over Q(B). Now suppose that the sequence \{r(n)\} is strictly increasing. Then r(n) > n because r(0)=\dim_{Q(B)}Q(B)=1. Fix an integer n and let e_1, \ldots , e_{r(n)} be a Q(B)-basis for Q(B)V^n. Clearly we may assume that e_i \in V^n for all i. Let W be a frame of a finitely generated subalgebra of B. Then

(V+W)^{2n} \supseteq W^nV^n \supseteq W^ne_1 + \ldots + W^ne_{r(n)},

which gives us

\dim_k(V+W)^{2n} \geq r(n) \dim_k W^n > n \dim_k W^n,

because the sum W^ne_1 + \ldots + W^ne_{r(n)} is direct. Therefore {\rm{GKdim}}(A) \geq 1 + {\rm{GKdim}}(B), which is a contradiction. So we have proved that the second possibility is in fact impossible and hence Q(B)A is finite dimensional over Q(B). Finally, since, as we just proved, \dim_{Q(B)}Q(B)A < \infty, the domain Q(B)A is algebraic over Q(B) and thus it is a division algebra. Hence Q(B)A=Q(A) because A \subseteq Q(B)A \subseteq Q(A) and Q(A) is the smallest division algebra containing A. \Box

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s